НЕСТАЦИОНАРНОЕ ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ НАД МНОГОСЛОЙНОЙ ДИЭЛЕКТРИЧЕСКОЙ СРЕДОЙ
Зинич Дмитрий Валерьевич
Научный руководитель
: Беличенко Виктор Петрович, канд. физ.-мат. наук, доцент кафедры радиофизикиТомский государственный университет
, г.Томск, РоссияВ работе исследуется нестационарное электромагнитное поле горизонтального электрического диполя в присутствии плоскослоистой диэлектрической среды. Интерес к этой задаче объясняется развитием таких направлений как зондирование слоистых сред, разработка георадаров, подповерхностная радиолокация. Решение этой задачи в частотной области в виде суперпозиции плоских волн с непрерывным спектром пространственных частот хорошо известно
[1]. Это решение в виде интеграла Зоммерфельда. Переход во временную область обычно осуществляется обратным преобразованием Фурье.Последние достижения в короткоимпульсной генерации стимулируют интерес к решению во временной области, когда антенна возбуждается очень коротким импульсом тока (единицы наносекунд). Получить решение во временной области при помощи обратного преобразования Фурье в этом случае трудно, так как спектр частот возбуждающего импульса тока очень широк. Это неудобно в вычислительном отношении и, помимо этого, трудно дать физическую интерпретацию полученного решения.
Альтернативой является использование подхода, получившего в зарубежной литературе название
‘Cagniard-de-Hoop method’. При этом оказывается возможным сформировать решение во временной области прямо из интегрального представления решения в частотной области без использования обратного преобразования Фурье [2].При постановке задачи предполагается, что среда не обладает дисперсией (проводимость равна нулю), каждый слой имеет соответствующие значения диэлектрической проницаемости и толщины. Значение магнитной проницаемости для каждого слоя полагается одинаковым и равным проницаемости свободного пространства (немагнитная среда). Используется известное решение задачи в частотной области. Выражения для коэффициентов отражения плоских электромагнитных волн от плоскослоистой среды, входящих в это решение, раскладываются в бесконечные ряды с использованием формулы для суммы членов бесконечной геометрической прогрессии. После этого оказывается возможным выделить интегральные представления, описывающие порознь прямую волну, отражённую от однородного диэлектрического полупространства волну, и волны, испытавшие многократные отражения внутри плоскослоистой среды
.Решение в частотной области
E(Важнейшая особенность этого метода заключается в том, что решение во временной области представляется в виде однократного комплексного интеграла в конечных пределах, при условии, что момент тока диполя описывается функцией Хевисайда. При произвольной зависимости момента тока диполя от времени требуется ещё осуществить свёртку этого решения с функцией, характеризующей ток в диполе.
Применённый подход, в отличие от традиционного спектрального подхода, приводит к более эффективному и более устойчивому вычислительному алгоритму при численном исследовании полей.
Результаты численных расчётов будут представлены в докладе.
Литература:
- М.: Радио и связь, 1983. - 296 с.
e-mail: asf@asf.e-burg.ru